Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Passage from the Boltzmann equation with Diffuse Boundary to the Incompressible Euler equation with Heat Convection (2104.02169v1)

Published 5 Apr 2021 in math.AP

Abstract: We derive the incompressible Euler equations with heat convection with the no-penetration boundary condition from the Boltzmann equation with the diffuse boundary in the hydrodynamic limit for the scale of large Reynold number. Inspired by the recent framework in [30], we consider the Navier-Stokes-Fourier system with no-slip boundary conditions as an intermediary approximation and develop a Hilbert-type expansion of the Boltzmann equation around the global Maxwellian that allows the nontrivial heat transfer by convection in the limit. To justify our expansion and the limit, a new direct estimate of the heat flux and its derivatives in the Navier-Stokes-Fourier system is established adopting a recent Green's function approach in the study of the inviscid limit.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.