Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 128 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

The 4d superconformal index near roots of unity and 3d Chern-Simons theory (2104.02051v3)

Published 5 Apr 2021 in hep-th

Abstract: We consider the $S3\times S1$ superconformal index $\mathcal{I}(\tau)$ of 4d $\mathcal{N}=1$ gauge theories. The Hamiltonian index is defined in a standard manner as the Witten index with a chemical potential $\tau$ coupled to a combination of angular momenta on $S3$ and the $U(1)$ R-charge. We develop the all-order asymptotic expansion of the index as $q = e{2 \pi i \tau}$ approaches a root of unity, i.e. as $\widetilde \tau \equiv m \tau + n \to 0$, with $m,n$ relatively prime integers. The asymptotic expansion of $\log\mathcal{I}(\tau)$ has terms of the form $\widetilde \tauk$, $k = -2, -1, 0, 1$. We determine the coefficients of the $k=-2,-1,1$ terms from the gauge theory data, and provide evidence that the $k=0$ term is determined by the Chern-Simons partition function on $S3/\mathbb{Z}_m$. We explain these findings from the point of view of the 3d theory obtained by reducing the 4d gauge theory on the $S1$. The supersymmetric functional integral of the 3d theory takes the form of a matrix integral over the dynamical 3d fields, with an effective action given by supersymmetrized Chern-Simons couplings of background and dynamical gauge fields. The singular terms in the $\widetilde \tau \to 0$ expansion (dictating the growth of the 4d index) are governed by the background Chern-Simons couplings. The constant term has a background piece as well as a piece given by the localized functional integral over the dynamical 3d gauge multiplet. The linear term arises from the supersymmetric Casimir energy factor needed to go between the functional integral and the Hamiltonian index.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.