Papers
Topics
Authors
Recent
Search
2000 character limit reached

Cyclic Co-Learning of Sounding Object Visual Grounding and Sound Separation

Published 5 Apr 2021 in cs.CV, cs.MM, cs.SD, and eess.AS | (2104.02026v1)

Abstract: There are rich synchronized audio and visual events in our daily life. Inside the events, audio scenes are associated with the corresponding visual objects; meanwhile, sounding objects can indicate and help to separate their individual sounds in the audio track. Based on this observation, in this paper, we propose a cyclic co-learning (CCoL) paradigm that can jointly learn sounding object visual grounding and audio-visual sound separation in a unified framework. Concretely, we can leverage grounded object-sound relations to improve the results of sound separation. Meanwhile, benefiting from discriminative information from separated sounds, we improve training example sampling for sounding object grounding, which builds a co-learning cycle for the two tasks and makes them mutually beneficial. Extensive experiments show that the proposed framework outperforms the compared recent approaches on both tasks, and they can benefit from each other with our cyclic co-learning.

Citations (84)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.