Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Task-Motion Planning Framework Using Iteratively Deepened AND/OR Graph Networks

Published 4 Apr 2021 in cs.RO and cs.AI | (2104.01549v1)

Abstract: We present an approach for Task-Motion Planning (TMP) using Iterative Deepened AND/OR Graph Networks (TMP-IDAN) that uses an AND/OR graph network based novel abstraction for compactly representing the task-level states and actions. While retrieving a target object from clutter, the number of object re-arrangements required to grasp the target is not known ahead of time. To address this challenge, in contrast to traditional AND/OR graph-based planners, we grow the AND/OR graph online until the target grasp is feasible and thereby obtain a network of AND/OR graphs. The AND/OR graph network allows faster computations than traditional task planners. We validate our approach and evaluate its capabilities using a Baxter robot and a state-of-the-art robotics simulator in several challenging non-trivial cluttered table-top scenarios. The experiments show that our approach is readily scalable to increasing number of objects and different degrees of clutter.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.