Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data-driven Contact Network Models of COVID-19 Reveal Trade-offs between Costs and Infections for Optimal Local Containment Policies (2104.01456v1)

Published 3 Apr 2021 in physics.soc-ph, cs.SI, and nlin.AO

Abstract: While several non-pharmacological measures have been implemented for a few months in an effort to slow the coronavirus disease (COVID-19) pandemic in the United States, the disease remains a danger in a number of counties as restrictions are lifted to revive the economy. Making a trade-off between economic recovery and infection control is a major challenge confronting many hard-hit counties. Understanding the transmission process and quantifying the costs of local policies are essential to the task of tackling this challenge. Here, we investigate the dynamic contact patterns of the populations from anonymized, geo-localized mobility data and census and demographic data to create data-driven, agent-based contact networks. We then simulate the epidemic spread with a time-varying contagion model in ten large metropolitan counties in the United States and evaluate a combination of mobility reduction, mask use, and reopening policies. We find that our model captures the spatial-temporal and heterogeneous case trajectory within various counties based on dynamic population behaviors. Our results show that a decision-making tool that considers both economic cost and infection outcomes of policies can be informative in making decisions of local containment strategies for optimal balancing of economic slowdown and virus spread.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Chao Fan (48 papers)
  2. Xiangqi Jiang (3 papers)
  3. Ronald Lee (1 paper)
  4. Ali Mostafavi (99 papers)
Citations (2)