Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SGBA: A Stealthy Scapegoat Backdoor Attack against Deep Neural Networks (2104.01026v3)

Published 2 Apr 2021 in cs.CR

Abstract: Outsourced deep neural networks have been demonstrated to suffer from patch-based trojan attacks, in which an adversary poisons the training sets to inject a backdoor in the obtained model so that regular inputs can be still labeled correctly while those carrying a specific trigger are falsely given a target label. Due to the severity of such attacks, many backdoor detection and containment systems have recently, been proposed for deep neural networks. One major category among them are various model inspection schemes, which hope to detect backdoors before deploying models from non-trusted third-parties. In this paper, we show that such state-of-the-art schemes can be defeated by a so-called Scapegoat Backdoor Attack, which introduces a benign scapegoat trigger in data poisoning to prevent the defender from reversing the real abnormal trigger. In addition, it confines the values of network parameters within the same variances of those from clean model during training, which further significantly enhances the difficulty of the defender to learn the differences between legal and illegal models through machine-learning approaches. Our experiments on 3 popular datasets show that it can escape detection by all five state-of-the-art model inspection schemes. Moreover, this attack brings almost no side-effects on the attack effectiveness and guarantees the universal feature of the trigger compared with original patch-based trojan attacks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Ying He (102 papers)
  2. Zhili Shen (4 papers)
  3. Chang Xia (1 paper)
  4. Jingyu Hua (8 papers)
  5. Wei Tong (37 papers)
  6. Sheng Zhong (57 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.