Papers
Topics
Authors
Recent
2000 character limit reached

A Sieve Stochastic Gradient Descent Estimator for Online Nonparametric Regression in Sobolev ellipsoids

Published 2 Apr 2021 in math.ST, stat.ME, and stat.TH | (2104.00846v2)

Abstract: The goal of regression is to recover an unknown underlying function that best links a set of predictors to an outcome from noisy observations. In nonparametric regression, one assumes that the regression function belongs to a pre-specified infinite-dimensional function space (the hypothesis space). In the online setting, when the observations come in a stream, it is computationally-preferable to iteratively update an estimate rather than refitting an entire model repeatedly. Inspired by nonparametric sieve estimation and stochastic approximation methods, we propose a sieve stochastic gradient descent estimator (Sieve-SGD) when the hypothesis space is a Sobolev ellipsoid. We show that Sieve-SGD has rate-optimal mean squared error (MSE) under a set of simple and direct conditions. The proposed estimator can be constructed with a low computational (time and space) expense: We also formally show that Sieve-SGD requires almost minimal memory usage among all statistically rate-optimal estimators.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.