Papers
Topics
Authors
Recent
Search
2000 character limit reached

Fixed Depth Hamiltonian Simulation via Cartan Decomposition

Published 1 Apr 2021 in quant-ph and cond-mat.str-el | (2104.00728v4)

Abstract: Simulating quantum dynamics on classical computers is challenging for large systems due to the significant memory requirements. Simulation on quantum computers is a promising alternative, but fully optimizing quantum circuits to minimize limited quantum resources remains an open problem. We tackle this problem presenting a constructive algorithm, based on Cartan decomposition of the Lie algebra generated by the Hamiltonian, that generates quantum circuits with time-independent depth. We highlight our algorithm for special classes of models, including Anderson localization in one dimensional transverse field XY model, where a O(n2)-gate circuits naturally emerge. Compared to product formulas with significantly larger gate counts, our algorithm drastically improves simulation precision. In addition to providing exact circuits for a broad set of spin and fermionic models, our algorithm provides broad analytic and numerical insight into optimal Hamiltonian simulations.

Citations (39)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.