Papers
Topics
Authors
Recent
Search
2000 character limit reached

Spectral Dependence

Published 31 Mar 2021 in stat.ME | (2103.17240v1)

Abstract: This paper presents a general framework for modeling dependence in multivariate time series. Its fundamental approach relies on decomposing each signal in a system into various frequency components and then studying the dependence properties through these oscillatory activities.The unifying theme across the paper is to explore the strength of dependence and possible lead-lag dynamics through filtering. The proposed framework is capable of representing both linear and non-linear dependencies that could occur instantaneously or after some delay(lagged dependence). Examples for studying dependence between oscillations are illustrated through multichannel electroencephalograms. These examples emphasized that some of the most prominent frequency domain measures such as coherence, partial coherence,and dual-frequency coherence can be derived as special cases under this general framework.This paper also introduces related approaches for modeling dependence through phase-amplitude coupling and causality of (one-sided) filtered signals.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.