Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Divide and Rule: Effective Pre-Training for Context-Aware Multi-Encoder Translation Models (2103.17151v2)

Published 31 Mar 2021 in cs.CL

Abstract: Multi-encoder models are a broad family of context-aware neural machine translation systems that aim to improve translation quality by encoding document-level contextual information alongside the current sentence. The context encoding is undertaken by contextual parameters, trained on document-level data. In this work, we discuss the difficulty of training these parameters effectively, due to the sparsity of the words in need of context (i.e., the training signal), and their relevant context. We propose to pre-train the contextual parameters over split sentence pairs, which makes an efficient use of the available data for two reasons. Firstly, it increases the contextual training signal by breaking intra-sentential syntactic relations, and thus pushing the model to search the context for disambiguating clues more frequently. Secondly, it eases the retrieval of relevant context, since context segments become shorter. We propose four different splitting methods, and evaluate our approach with BLEU and contrastive test sets. Results show that it consistently improves learning of contextual parameters, both in low and high resource settings.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Lorenzo Lupo (5 papers)
  2. Marco Dinarelli (20 papers)
  3. Laurent Besacier (76 papers)
Citations (14)

Summary

We haven't generated a summary for this paper yet.