Papers
Topics
Authors
Recent
Search
2000 character limit reached

Differentially Private Histograms under Continual Observation: Streaming Selection into the Unknown

Published 31 Mar 2021 in cs.DS and cs.CR | (2103.16787v2)

Abstract: We generalize the continuous observation privacy setting from Dwork et al. '10 and Chan et al. '11 by allowing each event in a stream to be a subset of some (possibly unknown) universe of items. We design differentially private (DP) algorithms for histograms in several settings, including top-$k$ selection, with privacy loss that scales with polylog$(T)$, where $T$ is the maximum length of the input stream. We present a meta-algorithm that can use existing one-shot top-$k$ DP algorithms as a subroutine to continuously release private histograms from a stream. Further, we present more practical DP algorithms for two settings: 1) continuously releasing the top-$k$ counts from a histogram over a known domain when an event can consist of an arbitrary number of items, and 2) continuously releasing histograms over an unknown domain when an event has a limited number of items.

Citations (32)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.