Papers
Topics
Authors
Recent
2000 character limit reached

Robustifying Conditional Portfolio Decisions via Optimal Transport

Published 30 Mar 2021 in q-fin.PM, math.OC, and stat.ML | (2103.16451v3)

Abstract: We propose a data-driven portfolio selection model that integrates side information, conditional estimation and robustness using the framework of distributionally robust optimization. Conditioning on the observed side information, the portfolio manager solves an allocation problem that minimizes the worst-case conditional risk-return trade-off, subject to all possible perturbations of the covariate-return probability distribution in an optimal transport ambiguity set. Despite the non-linearity of the objective function in the probability measure, we show that the distributionally robust portfolio allocation with side information problem can be reformulated as a finite-dimensional optimization problem. If portfolio decisions are made based on either the mean-variance or the mean-Conditional Value-at-Risk criterion, the resulting reformulation can be further simplified to second-order or semi-definite cone programs. Empirical studies in the US equity market demonstrate the advantage of our integrative framework against other benchmarks.

Citations (20)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.