Papers
Topics
Authors
Recent
Search
2000 character limit reached

Early Detection of In-Memory Malicious Activity based on Run-time Environmental Features

Published 30 Mar 2021 in cs.CR and cs.LG | (2103.16029v1)

Abstract: In recent years malware has become increasingly sophisticated and difficult to detect prior to exploitation. While there are plenty of approaches to malware detection, they all have shortcomings when it comes to identifying malware correctly prior to exploitation. The trade-off is usually between false positives, causing overhead, preventing normal usage and the risk of letting the malware execute and cause damage to the target. We present a novel end-to-end solution for in-memory malicious activity detection done prior to exploitation by leveraging machine learning capabilities based on data from unique run-time logs, which are carefully curated in order to detect malicious activity in the memory of protected processes. This solution achieves reduced overhead and false positives as well as deployment simplicity. We implemented our solution for Windows-based systems, employing multi disciplinary knowledge from malware research, machine learning, and operating system internals. Our experimental evaluation yielded promising results. As we expect future sophisticated malware may try to bypass it, we also discuss how our solution can be extended to thwart such bypassing attempts.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.