Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Saddle Point Optimization with Approximate Minimization Oracle (2103.15985v2)

Published 29 Mar 2021 in math.OC and cs.NE

Abstract: A major approach to saddle point optimization $\min_x\max_y f(x, y)$ is a gradient based approach as is popularized by generative adversarial networks (GANs). In contrast, we analyze an alternative approach relying only on an oracle that solves a minimization problem approximately. Our approach locates approximate solutions $x'$ and $y'$ to $\min_{x'}f(x', y)$ and $\max_{y'}f(x, y')$ at a given point $(x, y)$ and updates $(x, y)$ toward these approximate solutions $(x', y')$ with a learning rate $\eta$. On locally strong convex--concave smooth functions, we derive conditions on $\eta$ to exhibit linear convergence to a local saddle point, which reveals a possible shortcoming of recently developed robust adversarial reinforcement learning algorithms. We develop a heuristic approach to adapt $\eta$ derivative-free and implement zero-order and first-order minimization algorithms. Numerical experiments are conducted to show the tightness of the theoretical results as well as the usefulness of the $\eta$ adaptation mechanism.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Youhei Akimoto (54 papers)
Citations (7)

Summary

We haven't generated a summary for this paper yet.