Non-hermitian time evolution: from static to parametric instability (2103.15915v2)
Abstract: Eigenmode coalescence imparts remarkable properties to non-hermitian time evolution, culminating in a purely non-hermitian spectral degeneracy known as an exceptional point (EP). Here, we revisit time evolution at the EP and classify two-level non-hermitian Hamiltonians in terms of the M\"obius group. We then leverage that classification to study dynamical EP encircling, by applying it to periodically-modulated (Floquet) Hamiltonians. This reveals that Floquet non-hermitian systems exhibit rich physics whose complexity is not captured by an EP-encircling rule. For example, Floquet EPs can occur without encircling and vice-versa. Instead, we show that the elaborate interplay between non-hermitian and modulation instabilities is better understood through the lens of parametric resonance.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.