Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Toward Building Science Discovery Machines (2103.15551v7)

Published 24 Mar 2021 in cs.AI

Abstract: The dream of building machines that can do science has inspired scientists for decades. Remarkable advances have been made recently; however, we are still far from achieving this goal. In this paper, we focus on the scientific discovery process where a high level of reasoning and remarkable problem-solving ability are required. We review different machine learning techniques used in scientific discovery with their limitations. We survey and discuss the main principles driving the scientific discovery process. These principles are used in different fields and by different scientists to solve problems and discover new knowledge. We provide many examples of the use of these principles in different fields such as physics, mathematics, and biology. We also review AI systems that attempt to implement some of these principles. We argue that building science discovery machines should be guided by these principles as an alternative to the dominant approach of current AI systems that focuses on narrow objectives. Building machines that fully incorporate these principles in an automated way might open the doors for many advancements.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Abdullah Khalili (2 papers)
  2. Abdelhamid Bouchachia (8 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.