Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Context-aware short-term interest first model for session-based recommendation (2103.15514v1)

Published 29 Mar 2021 in cs.IR and cs.AI

Abstract: In the case that user profiles are not available, the recommendation based on anonymous session is particularly important, which aims to predict the items that the user may click at the next moment based on the user's access sequence over a while. In recent years, with the development of recurrent neural network, attention mechanism, and graph neural network, the performance of session-based recommendation has been greatly improved. However, the previous methods did not comprehensively consider the context dependencies and short-term interest first of the session. Therefore, we propose a context-aware short-term interest first model (CASIF).The aim of this paper is improve the accuracy of recommendations by combining context and short-term interest. In CASIF, we dynamically construct a graph structure for session sequences and capture rich context dependencies via graph neural network (GNN), latent feature vectors are captured as inputs of the next step. Then we build the short-term interest first module, which can to capture the user's general interest from the session in the context of long-term memory, at the same time get the user's current interest from the item of the last click. In the end, the short-term and long-term interest are combined as the final interest and multiplied by the candidate vector to obtain the recommendation probability. Finally, a large number of experiments on two real-world datasets demonstrate the effectiveness of our proposed method.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Haomei Duan (1 paper)
  2. Jinghua Zhu (1 paper)
Citations (1)

Summary

We haven't generated a summary for this paper yet.