Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the limits of algorithmic prediction across the globe (2103.15212v1)

Published 28 Mar 2021 in cs.LG

Abstract: The impact of predictive algorithms on people's lives and livelihoods has been noted in medicine, criminal justice, finance, hiring and admissions. Most of these algorithms are developed using data and human capital from highly developed nations. We tested how well predictive models of human behavior trained in a developed country generalize to people in less developed countries by modeling global variation in 200 predictors of academic achievement on nationally representative student data for 65 countries. Here we show that state-of-the-art machine learning models trained on data from the United States can predict achievement with high accuracy and generalize to other developed countries with comparable accuracy. However, accuracy drops linearly with national development due to global variation in the importance of different achievement predictors, providing a useful heuristic for policymakers. Training the same model on national data yields high accuracy in every country, which highlights the value of local data collection.

Citations (5)

Summary

We haven't generated a summary for this paper yet.