Papers
Topics
Authors
Recent
2000 character limit reached

Hierarchical Relationship Alignment Metric Learning (2103.15107v1)

Published 28 Mar 2021 in cs.LG

Abstract: Most existing metric learning methods focus on learning a similarity or distance measure relying on similar and dissimilar relations between sample pairs. However, pairs of samples cannot be simply identified as similar or dissimilar in many real-world applications, e.g., multi-label learning, label distribution learning. To this end, relation alignment metric learning (RAML) framework is proposed to handle the metric learning problem in those scenarios. But RAML learn a linear metric, which can't model complex datasets. Combining with deep learning and RAML framework, we propose a hierarchical relationship alignment metric leaning model HRAML, which uses the concept of relationship alignment to model metric learning problems under multiple learning tasks, and makes full use of the consistency between the sample pair relationship in the feature space and the sample pair relationship in the label space. Further we organize several experiment divided by learning tasks, and verified the better performance of HRAML against many popular methods and RAML framework.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.