Papers
Topics
Authors
Recent
2000 character limit reached

Extensions and crossed modules of $n$-Lie Rinehart algebras

Published 27 Mar 2021 in math.RA and math.RT | (2103.15006v1)

Abstract: We introduce a notion of $n$-Lie Rinehart algebras as a generalization of Lie Rinehart algebras to $n$-ary case. This notion is also an algebraic analogue of $n$-Lie algebroids. We develop representation theory and describe a cohomology complex of $n$-Lie Rinehart algebras. Furthermore, we investigate extension theory of $n$-Lie Rinehart algebras by means of $2$-cocycles. Finally, we introduce crossed modules of $n$-Lie Rinehart algebras to gain a better understanding of their third dimensional cohomology groups.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.