On sheaves of Lie-Rinehart algebras (2010.15463v2)
Abstract: We study sheaves of Lie-Rinehart algebras over locally ringed spaces. We introduce morphisms and comorphisms of such sheaves and prove factorization theorems for each kind of morphism. Using this notion of morphism, we obtain (higher) homotopy groups and groupoids for such objects which directly generalize the homotopy groups and Weinstein groupoids of Lie algebroids. We consider, the special case of sheaves of Lie-Rinehart algebras over smooth manifolds. We show that, under some reasonable assumptions, such sheaves induce a partition of the underlying manifold into leaves and that these leaves are precisely the orbits of the fundamental groupoid.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.