Papers
Topics
Authors
Recent
2000 character limit reached

Leaky Nets: Recovering Embedded Neural Network Models and Inputs through Simple Power and Timing Side-Channels -- Attacks and Defenses

Published 26 Mar 2021 in cs.CR and cs.LG | (2103.14739v1)

Abstract: With the recent advancements in machine learning theory, many commercial embedded micro-processors use neural network models for a variety of signal processing applications. However, their associated side-channel security vulnerabilities pose a major concern. There have been several proof-of-concept attacks demonstrating the extraction of their model parameters and input data. But, many of these attacks involve specific assumptions, have limited applicability, or pose huge overheads to the attacker. In this work, we study the side-channel vulnerabilities of embedded neural network implementations by recovering their parameters using timing-based information leakage and simple power analysis side-channel attacks. We demonstrate our attacks on popular micro-controller platforms over networks of different precisions such as floating point, fixed point, binary networks. We are able to successfully recover not only the model parameters but also the inputs for the above networks. Countermeasures against timing-based attacks are implemented and their overheads are analyzed.

Citations (29)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.