Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Modal RGB-D Scene Recognition Across Domains (2103.14672v2)

Published 26 Mar 2021 in cs.CV and cs.RO

Abstract: Scene recognition is one of the basic problems in computer vision research with extensive applications in robotics. When available, depth images provide helpful geometric cues that complement the RGB texture information and help to identify discriminative scene image features. Depth sensing technology developed fast in the last years and a great variety of 3D cameras have been introduced, each with different acquisition properties. However, those properties are often neglected when targeting big data collections, so multi-modal images are gathered disregarding their original nature. In this work, we put under the spotlight the existence of a possibly severe domain shift issue within multi-modality scene recognition datasets. As a consequence, a scene classification model trained on one camera may not generalize on data from a different camera, only providing a low recognition performance. Starting from the well-known SUN RGB-D dataset, we designed an experimental testbed to study this problem and we use it to benchmark the performance of existing methods. Finally, we introduce a novel adaptive scene recognition approach that leverages self-supervised translation between modalities. Indeed, learning to go from RGB to depth and vice-versa is an unsupervised procedure that can be trained jointly on data of multiple cameras and may help to bridge the gap among the extracted feature distributions. Our experimental results confirm the effectiveness of the proposed approach.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Andrea Ferreri (1 paper)
  2. Silvia Bucci (18 papers)
  3. Tatiana Tommasi (50 papers)
Citations (5)