Papers
Topics
Authors
Recent
2000 character limit reached

Classification of Pneumonia and Tuberculosis from Chest X-rays

Published 25 Mar 2021 in eess.IV and cs.LG | (2103.14562v1)

Abstract: AI and specifically machine learning is making inroads into number of fields. Machine learning is replacing and/or complementing humans in a certain type of domain to make systems perform tasks more efficiently and independently. Healthcare is a worthy domain to merge with AI and Machine learning to get things to work smoother and efficiently. The X-ray based detection and classification of diseases related to chest is much needed in this modern era due to the low number of quality radiologists. This thesis focuses on the classification of Pneumonia and Tuberculosis two major chest diseases from the chest X-rays. This system provides an opinion to the user whether one is having a disease or not, thereby helping doctors and medical staff to make a quick and informed decision about the presence of disease. As compared to previous work our model can detect two types of abnormality. Our model can detect whether X-ray is normal or having abnormality which can be pneumonia and tuberculosis 92.97% accurately.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (4)

Collections

Sign up for free to add this paper to one or more collections.