Papers
Topics
Authors
Recent
Search
2000 character limit reached

Learning Temporal Quantum Tomography

Published 25 Mar 2021 in quant-ph, cs.LG, and physics.data-an | (2103.13973v4)

Abstract: Quantifying and verifying the control level in preparing a quantum state are central challenges in building quantum devices. The quantum state is characterized from experimental measurements, using a procedure known as tomography, which requires a vast number of resources. Furthermore, the tomography for a quantum device with temporal processing, which is fundamentally different from the standard tomography, has not been formulated. We develop a practical and approximate tomography method using a recurrent machine learning framework for this intriguing situation. The method is based on repeated quantum interactions between a system called quantum reservoir with a stream of quantum states. Measurement data from the reservoir are connected to a linear readout to train a recurrent relation between quantum channels applied to the input stream. We demonstrate our algorithms for quantum learning tasks followed by the proposal of a quantum short-term memory capacity to evaluate the temporal processing ability of near-term quantum devices.

Citations (25)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.