Papers
Topics
Authors
Recent
2000 character limit reached

Robust Stochastic Stability in Dynamic and Reactive Environments

Published 24 Mar 2021 in cs.MA and cs.GT | (2103.13475v2)

Abstract: The theory of learning in games has extensively studied situations where agents respond dynamically to each other by optimizing a fixed utility function. However, in many settings of interest, agent utility functions themselves vary as a result of past agent choices. The ongoing COVID-19 pandemic provides an example: a highly prevalent virus may incentivize individuals to wear masks, but extensive adoption of mask-wearing reduces virus prevalence which in turn reduces individual incentives for mask-wearing. This paper develops a general framework using probabilistic coupling methods that can be used to derive the stochastically stable states of log-linear learning in certain games which feature such game-environment feedback. As a case study, we apply this framework to a simple dynamic game-theoretic model of social precautions in an epidemic and give conditions under which maximally cautious social behavior in this model is stochastically stable.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.