Equidistributions around special kinds of descents and excedances
Abstract: We consider a sequence of four variable polynomials by refining Stieltjes' continued fraction for Eulerian polynomials. Using combinatorial theory of Jacobi-type continued fractions and bijections we derive various combinatorial interpretations in terms of permutation statistics for these polynomials, which include special kinds of descents and excedances in a paper of Baril and Kirgizov. As a by-product, we derive several equidistribution results for permutation statistics, which enables us to confirm and strengthen a recent conjecture of Vajnovszki and also to obtain several compagnion permutation statistics for two bistatistics in a conjecture of Baril and Kirgizov.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.