Papers
Topics
Authors
Recent
Search
2000 character limit reached

Pairwise Adjusted Mutual Information

Published 23 Mar 2021 in cs.LG | (2103.12641v1)

Abstract: A well-known metric for quantifying the similarity between two clusterings is the adjusted mutual information. Compared to mutual information, a corrective term based on random permutations of the labels is introduced, preventing two clusterings being similar by chance. Unfortunately, this adjustment makes the metric computationally expensive. In this paper, we propose a novel adjustment based on {pairwise} label permutations instead of full label permutations. Specifically, we consider permutations where only two samples, selected uniformly at random, exchange their labels. We show that the corresponding adjusted metric, which can be expressed explicitly, behaves similarly to the standard adjusted mutual information for assessing the quality of a clustering, while having a much lower time complexity. Both metrics are compared in terms of quality and performance on experiments based on synthetic and real data.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.