Papers
Topics
Authors
Recent
2000 character limit reached

On the well-posedness of the time-fractional diffusion equation with Robin boundary condition (2103.12588v1)

Published 23 Mar 2021 in math.AP

Abstract: The diffusion system with time-fractional order derivative is of great importance mathematically due to the nonlocal property of the fractional order derivative, which can be applied to model the physical phenomena with memory effects. We consider an initial-boundary value problem for the time-fractional diffusion equation with inhomogenous Robin boundary condition. Firstly, we show the unique existence of the weak/strong solution based on the eigenfunction expansions, which ensures the well-posedness of the direct problem. Then, we establish the Hopf lemma for time-fractional diffusion operator, generalizing the counterpart for the classical parabolic equation. Based on this new Hopf lemma, the maximum principles for this time-fractional diffusion are finally proven, which play essential roles for further studying the uniqueness of the inverse problems corresponding to this system.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.