Papers
Topics
Authors
Recent
2000 character limit reached

OFFSEG: A Semantic Segmentation Framework For Off-Road Driving

Published 23 Mar 2021 in cs.CV and cs.RO | (2103.12417v1)

Abstract: Off-road image semantic segmentation is challenging due to the presence of uneven terrains, unstructured class boundaries, irregular features and strong textures. These aspects affect the perception of the vehicle from which the information is used for path planning. Current off-road datasets exhibit difficulties like class imbalance and understanding of varying environmental topography. To overcome these issues we propose a framework for off-road semantic segmentation called as OFFSEG that involves (i) a pooled class semantic segmentation with four classes (sky, traversable region, non-traversable region and obstacle) using state-of-the-art deep learning architectures (ii) a colour segmentation methodology to segment out specific sub-classes (grass, puddle, dirt, gravel, etc.) from the traversable region for better scene understanding. The evaluation of the framework is carried out on two off-road driving datasets, namely, RELLIS-3D and RUGD. We have also tested proposed framework in IISERB campus frames. The results show that OFFSEG achieves good performance and also provides detailed information on the traversable region.

Citations (45)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.