Papers
Topics
Authors
Recent
2000 character limit reached

A New Causal Approach to Account for Treatment Switching in Randomized Experiments under a Structural Cumulative Survival Model

Published 22 Mar 2021 in stat.ME and stat.AP | (2103.12206v1)

Abstract: Treatment switching in a randomized controlled trial is said to occur when a patient randomized to one treatment arm switches to another treatment arm during follow-up. This can occur at the point of disease progression, whereby patients in the control arm may be offered the experimental treatment. It is widely known that failure to account for treatment switching can seriously dilute the estimated effect of treatment on overall survival. In this paper, we aim to account for the potential impact of treatment switching in a re-analysis evaluating the treatment effect of NucleosideReverse Transcriptase Inhibitors (NRTIs) on a safety outcome (time to first severe or worse sign or symptom) in participants receiving a new antiretroviral regimen that either included or omitted NRTIs in the Optimized Treatment That Includes or OmitsNRTIs (OPTIONS) trial. We propose an estimator of a treatment causal effect under a structural cumulative survival model (SCSM) that leverages randomization as an instrumental variable to account for selective treatment switching. Unlike Robins' accelerated failure time model often used to address treatment switching, the proposed approach avoids the need for artificial censoring for estimation. We establish that the proposed estimator is uniformly consistent and asymptotically Gaussian under standard regularity conditions. A consistent variance estimator is also given and a simple resampling approach provides uniform confidence bands for the causal difference comparing treatment groups overtime on the cumulative intensity scale. We develop an R package named "ivsacim" implementing all proposed methods, freely available to download from R CRAN. We examine the finite performance of the estimator via extensive simulations.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.