Papers
Topics
Authors
Recent
Search
2000 character limit reached

3-Lie Algebras, Ternary Nambu-Lie algebras and the Yang-Baxter equation

Published 21 Mar 2021 in math.GT and math.QA | (2103.11472v4)

Abstract: We construct ternary self-distributive (TSD) objects from compositions of binary Lie algebras, $3$-Lie algebras and, in particular, ternary Nambu-Lie algebras. We show that the structures obtained satisfy an invertibility property resembling that of racks. We prove that these structures give rise to Yang-Baxter operators in the tensor product of the base vector space and, upon defining suitable twisting isomorphisms, we obtain representations of the infinite (framed) braid group. We consider examples for low-dimensional Lie algebras, where the ternary bracket is defined by composition of the binary ones, along with simple $3$-Lie algebras. We show that the Yang-Baxter operators obtained are not gauge equivalent to the transposition operator, and we consider the problem of deforming the operators to obtain new solutions to the Yang-Baxter equation. We discuss the applications of this deformation procedure to the construction of (framed) link invariants.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.