Papers
Topics
Authors
Recent
Search
2000 character limit reached

Fairmandering: A column generation heuristic for fairness-optimized political districting

Published 21 Mar 2021 in cs.CY, cs.DM, and cs.DS | (2103.11469v2)

Abstract: The American winner-take-all congressional district system empowers politicians to engineer electoral outcomes by manipulating district boundaries. Existing computational solutions mostly focus on drawing unbiased maps by ignoring political and demographic input, and instead simply optimize for compactness. We claim that this is a flawed approach because compactness and fairness are orthogonal qualities, and introduce a scalable two-stage method to explicitly optimize for arbitrary piecewise-linear definitions of fairness. The first stage is a randomized divide-and-conquer column generation heuristic which produces an exponential number of distinct district plans by exploiting the compositional structure of graph partitioning problems. This district ensemble forms the input to a master selection problem to choose the districts to include in the final plan. Our decoupled design allows for unprecedented flexibility in defining fairness-aligned objective functions. The pipeline is arbitrarily parallelizable, is flexible to support additional redistricting constraints, and can be applied to a wide array of other regionalization problems. In the largest ever ensemble study of congressional districts, we use our method to understand the range of possible expected outcomes and the implications of this range on potential definitions of fairness.

Citations (26)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.