The compact presentation for the alternating central extension of the $q$-Onsager algebra (2103.11229v1)
Abstract: The $q$-Onsager algebra $O_q$ is defined by two generators and two relations, called the $q$-Dolan/Grady relations. We investigate the alternating central extension $\mathcal O_q$ of $O_q$. The algebra $\mathcal O_q$ was introduced by Baseilhac and Koizumi, who called it the current algebra of $O_q$. Recently Baseilhac and Shigechi gave a presentation of $\mathcal O_q$ by generators and relations. The presentation is attractive, but the multitude of generators and relations makes the presentation unwieldy. In this paper we obtain a presentation of $\mathcal O_q$ that involves a subset of the original set of generators and a very manageable set of relations. We call this presentation the compact presentation of $\mathcal O_q$. This presentation resembles the compact presentation of the alternating central extension for the positive part of $U_q(\widehat{\mathfrak{sl}}_2)$.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.