Papers
Topics
Authors
Recent
Search
2000 character limit reached

Discrete Helly-type theorems for pseudohalfplanes

Published 20 Mar 2021 in math.CO and cs.CG | (2103.11142v2)

Abstract: We prove discrete Helly-type theorems for pseudohalfplanes, which extend recent results of Jensen, Joshi and Ray about halfplanes. Among others we show that given a family of pseudohalfplanes $\cal H$ and a set of points $P$, if every triple of pseudohalfplanes has a common point in $P$ then there exists a set of at most two points that hits every pseudohalfplane of $\cal H$. We also prove that if every triple of points of $P$ is contained in a pseudohalfplane of $\cal H$ then there are two pseudohalfplanes of $\cal H$ that cover all points of $P$. To prove our results we regard pseudohalfplane hypergraphs, define their extremal vertices and show that these behave in many ways as points on the boundary of the convex hull of a set of points. Our methods are purely combinatorial. In addition we determine the maximal possible chromatic number of the regarded hypergraph families.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.