Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bootstrapped Self-Supervised Training with Monocular Video for Semantic Segmentation and Depth Estimation (2103.11031v2)

Published 19 Mar 2021 in cs.CV and cs.RO

Abstract: For a robot deployed in the world, it is desirable to have the ability of autonomous learning to improve its initial pre-set knowledge. We formalize this as a bootstrapped self-supervised learning problem where a system is initially bootstrapped with supervised training on a labeled dataset and we look for a self-supervised training method that can subsequently improve the system over the supervised training baseline using only unlabeled data. In this work, we leverage temporal consistency between frames in monocular video to perform this bootstrapped self-supervised training. We show that a well-trained state-of-the-art semantic segmentation network can be further improved through our method. In addition, we show that the bootstrapped self-supervised training framework can help a network learn depth estimation better than pure supervised training or self-supervised training.

Citations (5)

Summary

We haven't generated a summary for this paper yet.