Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 25 tok/s
GPT-5 High 13 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 463 tok/s Pro
Kimi K2 232 tok/s Pro
2000 character limit reached

Transferable Model for Shape Optimization subject to Physical Constraints (2103.10805v1)

Published 19 Mar 2021 in cs.AI and physics.flu-dyn

Abstract: The interaction of neural networks with physical equations offers a wide range of applications. We provide a method which enables a neural network to transform objects subject to given physical constraints. Therefore an U-Net architecture is used to learn the underlying physical behaviour of fluid flows. The network is used to infer the solution of flow simulations, which will be shown for a wide range of generic channel flow simulations. Physical meaningful quantities can be computed on the obtained solution, e.g. the total pressure difference or the forces on the objects. A Spatial Transformer Network with thin-plate-splines is used for the interaction between the physical constraints and the geometric representation of the objects. Thus, a transformation from an initial to a target geometry is performed such that the object is fulfilling the given constraints. This method is fully differentiable i.e., gradient informations can be used for the transformation. This can be seen as an inverse design process. The advantage of this method over many other proposed methods is, that the physical constraints are based on the inferred flow field solution. Thus, we have a transferable model which can be applied to varying problem setups and is not limited to a given set of geometry parameters or physical quantities.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.