Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Deep Learning Techniques for Multiphase Flow Simulation in Heterogeneous Porous Media (1907.09571v1)

Published 22 Jul 2019 in math.NA and cs.NA

Abstract: We present efficient deep learning techniques for approximating flow and transport equations for both single phase and two-phase flow problems. The proposed methods take advantages of the sparsity structures in the underlying discrete systems and can be served as efficient alternatives to the system solvers at the full order. In particular, for the flow problem, we design a network with convolutional and locally connected layers to perform model reductions. Moreover, we employ a custom loss function to impose local mass conservation constraints. This helps to preserve the physical property of velocity solution which we are interested in learning. For the saturation problem, we propose a residual type of network to approximate the dynamics. Our main contribution here is the design of custom sparsely connected layers which take into account the inherent sparse interaction between the input and output. After training, the approximated feed-forward map can be applied iteratively to predict solutions in the long range. Our trained networks, especially in two-phase flow where the maps are nonlinear, show their great potential in accurately approximating the underlying physical system and improvement in computational efficiency. Some numerical experiments are performed and discussed to demonstrate the performance of our proposed techniques.

Citations (40)

Summary

We haven't generated a summary for this paper yet.