Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Naive Automated Machine Learning -- A Late Baseline for AutoML (2103.10496v1)

Published 18 Mar 2021 in cs.LG

Abstract: Automated Machine Learning (AutoML) is the problem of automatically finding the pipeline with the best generalization performance on some given dataset. AutoML has received enormous attention in the last decade and has been addressed with sophisticated black-box optimization techniques such as Bayesian Optimization, Grammar-Based Genetic Algorithms, and tree search algorithms. In contrast to those approaches, we present Naive AutoML, a very simple solution to AutoML that exploits important meta-knowledge about machine learning problems and makes simplifying, yet, effective assumptions to quickly come to high-quality solutions. While Naive AutoML can be considered a baseline for the highly sophisticated black-box solvers, we empirically show that those solvers are not able to outperform Naive AutoML; sometimes the contrary is true. On the other hand, Naive AutoML comes with strong advantages such as interpretability and flexibility and poses a strong challenge to current tools.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Felix Mohr (18 papers)
  2. Marcel Wever (23 papers)