Papers
Topics
Authors
Recent
Search
2000 character limit reached

Harmonic analysis on certain spherical varieties

Published 18 Mar 2021 in math.NT and math.RT | (2103.10261v3)

Abstract: Braverman and Kazhdan proposed a conjecture, later refined by Ng^o and broadened to the framework of spherical varieties by Sakellaridis, that asserts that affine spherical varieties admit Schwartz spaces, Fourier transforms, and Poisson summation formulae. The first author in joint work with B.~Liu and later the first two authors proved these conjectures for certain spherical varieties $Y$ built out of triples of quadratic spaces. However, in these works the Fourier transform was only proven to exist. In the present paper we give, for the first time, an explicit formula for the Fourier transform on $Y.$ We also prove that it is unitary in the nonarchimedean case. As preparation for this result, we give explicit formulae for Fourier transforms on Braverman-Kazhdan spaces attached to maximal parabolic subgroups of split, simple, simply connected groups. These Fourier transforms are of independent interest, for example, from the point of view of analytic number theory.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.