Papers
Topics
Authors
Recent
2000 character limit reached

Bias-Free FedGAN: A Federated Approach to Generate Bias-Free Datasets

Published 17 Mar 2021 in cs.LG, cs.CV, and cs.DC | (2103.09876v2)

Abstract: Federated Generative Adversarial Network (FedGAN) is a communication-efficient approach to train a GAN across distributed clients without clients having to share their sensitive training data. In this paper, we experimentally show that FedGAN generates biased data points under non-independent-and-identically-distributed (non-iid) settings. Also, we propose Bias-Free FedGAN, an approach to generate bias-free synthetic datasets using FedGAN. Our approach generates metadata at the aggregator using the models received from clients and retrains the federated model to achieve bias-free results for image synthesis. Bias-Free FedGAN has the same communication cost as that of FedGAN. Experimental results on image datasets (MNIST and FashionMNIST) validate our claims.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.