Papers
Topics
Authors
Recent
Search
2000 character limit reached

Solvability and stability of the inverse problem for the quadratic differential pencil

Published 17 Mar 2021 in math.SP | (2103.09802v1)

Abstract: The inverse spectral problem for the second-order differential pencil with quadratic dependence on the spectral parameter is studied. We obtain sufficient conditions for the global solvability of the inverse problem, prove its local solvability and stability. The problem is considered in the general case of complex-valued pencil coefficients and arbitrary eigenvalue multiplicities. Studying local solvability and stability, we take the possible splitting of multiple eigenvalues under a small perturbation of the spectrum into account. Our approach is constructive. It is based on the reduction of the nonlinear inverse problem to a linear equation in the Banach space of infinite sequences. The theoretical results are illustrated by numerical examples.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.