Scalable Hypergraph Embedding System
Abstract: Many problems such as node classification and link prediction in network data can be solved using graph embeddings. However, it is difficult to use graphs to capture non-binary relations such as communities of nodes. These kinds of complex relations are expressed more naturally as hypergraphs. While hypergraphs are a generalization of graphs, state-of-the-art graph embedding techniques are not adequate for solving prediction and classification tasks on large hypergraphs accurately in reasonable time. In this paper, we introduce HyperNetVec, a novel hierarchical framework for scalable unsupervised hypergraph embedding. HyperNetVec exploits shared-memory parallelism and is capable of generating high quality embeddings for real-world hypergraphs with millions of nodes and hyperedges in only a couple of minutes while existing hypergraph systems either fail for such large hypergraphs or may take days to produce the embeddings.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.