Papers
Topics
Authors
Recent
2000 character limit reached

No Intruder, no Validity: Evaluation Criteria for Privacy-Preserving Text Anonymization

Published 16 Mar 2021 in cs.CL | (2103.09263v1)

Abstract: For sensitive text data to be shared among NLP researchers and practitioners, shared documents need to comply with data protection and privacy laws. There is hence a growing interest in automated approaches for text anonymization. However, measuring such methods' performance is challenging: missing a single identifying attribute can reveal an individual's identity. In this paper, we draw attention to this problem and argue that researchers and practitioners developing automated text anonymization systems should carefully assess whether their evaluation methods truly reflect the system's ability to protect individuals from being re-identified. We then propose TILD, a set of evaluation criteria that comprises an anonymization method's technical performance, the information loss resulting from its anonymization, and the human ability to de-anonymize redacted documents. These criteria may facilitate progress towards a standardized way for measuring anonymization performance.

Citations (13)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.