Papers
Topics
Authors
Recent
2000 character limit reached

A new class of double phase variable exponent problems: Existence and uniqueness

Published 16 Mar 2021 in math.AP | (2103.08928v4)

Abstract: In this paper we introduce a new class of quasilinear elliptic equations driven by the so-called double phase operator with variable exponents. We prove certain properties of the corresponding Musielak-Orlicz Sobolev spaces (an equivalent norm, uniform convexity, Radon-Riesz property with respect to the modular) and the properties of the new double phase operator (continuity, strict monotonicity, (S$_+$)-property). In contrast to the known constant exponent case we are able to weaken the assumptions on the data. Finally we show the existence and uniqueness of corresponding elliptic equations with right-hand sides that have gradient dependence (so-called convection terms) under very general assumptions on the data. As a result of independent interest, we also show the density of smooth functions in the new Musielak-Orlicz Sobolev space even when the domain is unbounded.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.