Multi-view Subword Regularization
Abstract: Multilingual pretrained representations generally rely on subword segmentation algorithms to create a shared multilingual vocabulary. However, standard heuristic algorithms often lead to sub-optimal segmentation, especially for languages with limited amounts of data. In this paper, we take two major steps towards alleviating this problem. First, we demonstrate empirically that applying existing subword regularization methods(Kudo, 2018; Provilkov et al., 2020) during fine-tuning of pre-trained multilingual representations improves the effectiveness of cross-lingual transfer. Second, to take full advantage of different possible input segmentations, we propose Multi-view Subword Regularization (MVR), a method that enforces the consistency between predictions of using inputs tokenized by the standard and probabilistic segmentations. Results on the XTREME multilingual benchmark(Hu et al., 2020) show that MVR brings consistent improvements of up to 2.5 points over using standard segmentation algorithms.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.