Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Improving Adversarial Robustness via Channel-wise Activation Suppressing (2103.08307v2)

Published 11 Mar 2021 in cs.LG

Abstract: The study of adversarial examples and their activation has attracted significant attention for secure and robust learning with deep neural networks (DNNs). Different from existing works, in this paper, we highlight two new characteristics of adversarial examples from the channel-wise activation perspective: 1) the activation magnitudes of adversarial examples are higher than that of natural examples; and 2) the channels are activated more uniformly by adversarial examples than natural examples. We find that the state-of-the-art defense adversarial training has addressed the first issue of high activation magnitudes via training on adversarial examples, while the second issue of uniform activation remains. This motivates us to suppress redundant activation from being activated by adversarial perturbations via a Channel-wise Activation Suppressing (CAS) strategy. We show that CAS can train a model that inherently suppresses adversarial activation, and can be easily applied to existing defense methods to further improve their robustness. Our work provides a simple but generic training strategy for robustifying the intermediate layer activation of DNNs.

Citations (120)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.