Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adversarial Machine Learning Security Problems for 6G: mmWave Beam Prediction Use-Case (2103.07268v1)

Published 12 Mar 2021 in cs.LG and cs.AI

Abstract: 6G is the next generation for the communication systems. In recent years, machine learning algorithms have been applied widely in various fields such as health, transportation, and the autonomous car. The predictive algorithms will be used in 6G problems. With the rapid developments of deep learning techniques, it is critical to take the security concern into account to apply the algorithms. While machine learning offers significant advantages for 6G, AI models' security is ignored. Since it has many applications in the real world, security is a vital part of the algorithms. This paper has proposed a mitigation method for adversarial attacks against proposed 6G machine learning models for the millimeter-wave (mmWave) beam prediction with adversarial learning. The main idea behind adversarial attacks against machine learning models is to produce faulty results by manipulating trained deep learning models for 6G applications for mmWave beam prediction use case. We have also presented the adversarial learning mitigation method's performance for 6G security in millimeter-wave beam prediction application with fast gradient sign method attack. The mean square errors of the defended model and undefended model are very close.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Evren Catak (6 papers)
  2. Ferhat Ozgur Catak (32 papers)
  3. Arild Moldsvor (1 paper)
Citations (19)

Summary

We haven't generated a summary for this paper yet.