Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 67 tok/s
Gemini 2.5 Pro 36 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 66 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Scalar and mean curvature comparison via the Dirac operator (2103.06833v3)

Published 11 Mar 2021 in math.DG

Abstract: We use the Dirac operator technique to establish sharp distance estimates for compact spin manifolds under lower bounds on the scalar curvature in the interior and on the mean curvature of the boundary. In the situations we consider, we thereby give refined answers to questions on metric inequalities recently proposed by Gromov. This includes optimal estimates for Riemannian bands and for the long neck problem. In the case of bands over manifolds of non-vanishing $\hat{\mathrm{A}}$-genus, we establish a rigidity result stating that any band attaining the predicted upper bound is isometric to a particular warped product over some spin manifold admitting a parallel spinor. Furthermore, we establish scalar- and mean curvature extremality results for certain log-concave warped products. The latter includes annuli in all simply-connected space forms. On a technical level, our proofs are based on new spectral estimates for the Dirac operator augmented by a Lipschitz potential together with local boundary conditions.

Citations (36)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.