Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Result based Portable Framework for Spoken Language Understanding (2103.06010v1)

Published 10 Mar 2021 in cs.CL

Abstract: Spoken language understanding (SLU), which is a core component of the task-oriented dialogue system, has made substantial progress in the research of single-turn dialogue. However, the performance in multi-turn dialogue is still not satisfactory in the sense that the existing multi-turn SLU methods have low portability and compatibility for other single-turn SLU models. Further, existing multi-turn SLU methods do not exploit the historical predicted results when predicting the current utterance, which wastes helpful information. To gap those shortcomings, in this paper, we propose a novel Result-based Portable Framework for SLU (RPFSLU). RPFSLU allows most existing single-turn SLU models to obtain the contextual information from multi-turn dialogues and takes full advantage of predicted results in the dialogue history during the current prediction. Experimental results on the public dataset KVRET have shown that all SLU models in baselines acquire enhancement by RPFSLU on multi-turn SLU tasks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Lizhi Cheng (20 papers)
  2. Weijia Jia (42 papers)
  3. Wenmian Yang (12 papers)
Citations (8)

Summary

We haven't generated a summary for this paper yet.